MARGARET LAKE DIAMONDS INC. (TSX.V: DIA) (“MLD”)
KORID ENERGY CO. LTD. (“KORID”)
A SUBSIDIARY OF DST CO. LTD. (KOSDAQ: 033430)

VANADIUM REDOX BATTERY PRODUCTION
This presentation contains forward-looking information that involves various risks and uncertainties regarding future events. Such forward-looking information can include without limitation statements based on current expectations involving a number of risks and uncertainties and are not guarantees of future performance of the Company, such as final development of a commercial product(s), successful trial or pilot of company technologies, no assurance that commercial sales of any kind actually materialize; no assurance the Company will have sufficient funds to complete product development. There are numerous risks and uncertainties that could cause actual results and the Company’s plans and objectives to differ materially from those expressed in the forward-looking information, including: (i) adverse market conditions; (ii) risks regarding protection of proprietary technology; (iii) the ability of the Company to complete financings; (v) the ability of the Company to develop and market its future product; and (vi) risks regarding government regulation, managing and maintaining growth, the effect of adverse publicity, litigation, competition and other factors which may be identified from time to time in the Company’s public announcements and filings. There is no assurance that the DTCR business will provide any benefit to the Company, and no assurance that any proposed new products will be built or proceed. There is no assurance that existing “patent pending” technologies licensed by the Company will receive patent status by regulatory authorities. The Company is not currently selling commercial Energy Storage systems. Actual results and future events could differ materially from those anticipated in such information. These and all subsequent written and oral forward-looking information are based on estimates and opinions of management on the dates they are made and are expressly qualified in their entirety by this notice. Except as required by law, the Company does not intend to update these forward-looking statements.
Margaret Lake Diamonds is listed on the Toronto Stock Exchange Venture Under the Symbol DIA

Current shares issued 54,686,587

Post 1:5.468 rollback = 10,001,205 shares issued

To KORID for technology license 20,000,000 shares

Financing $5,000,000 @ $0.25 = 20,000,000 common shares

Total past transaction 50,001,205 shares
VRFB and Energy Storage Market

Image: Rongke Power’s factory that produces vanadium redox-flow batteries destined for the world’s largest battery site: a 200-megawatt, 800-megawatt-hour storage station in China’s Liaoning province.
MARKET OVERVIEW

Key channels to market

- Renewable energy developers
- Combined Heat and Power Plant (CHP) integrators
- Energy efficiency consultants
- Engineering, Procurement and Construction (EPC) firms
- Systems integrators
- Behind-the-meter peak demand consultants

Market Core Segments & Sizes

- Utilities
- Remote Microgrids
- Commercial & Industrial

- T&D Investment Deferral
 - $500B in the US by 2050 [1]
 - [1] Industrial Info Resources

- Microgrid Support
 - $42B globally by 2030 [2]

- Peak shaving + Backup Power
 - $350B in the US [3]
Vanadium redox flow batteries are fast becoming a preferred choice for suppliers and there are a number of companies worldwide which are commercialising this technology.

Redox flow batteries are rechargeable batteries that are charged and discharged by means of the oxidation-reduction reaction of ions of vanadium or the like.

Advantage over other systems include:

✔ Scalability
✔ Lifespan of 20 years
✔ Immediate energy release
✔ Excellent charge retention (up to 1 year)
✔ Suitability for grid connection
✔ Ability to discharge 100% with no damage
✔ Key feature of using only one element in electrolyte; V_2O_5

This makes them useful for grid scale applications, including grid balancing, and storing energy from variable output sources, including wind turbines and solar cells.

Vanadium redox flow battery technology Sumitomo 60MWh power generation and storage facility, installed in Hokkaido, Japan
Vanadium redox flow batteries have a number of advantages compared to existing and competing battery technologies. VRFBs last longer and can be charged and discharged repeatedly without any significant drop in performance.

Select battery technology comparisons

<table>
<thead>
<tr>
<th>Details (USD)</th>
<th>Vanadium Redox Flow</th>
<th>Zinc Bromine Flow</th>
<th>Lithium-ion</th>
<th>Lead Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upfront cost (USD/kWh)</td>
<td>$580-820$²</td>
<td>$800 – 875</td>
<td>$600 – 1,100$²</td>
<td>$100 – $200$²</td>
</tr>
<tr>
<td>Lifetime cost (USD/kWh LCOE)</td>
<td>$0.25 - $0.45$³</td>
<td>$0.20 – $0.30</td>
<td>$0.15 – $0.75</td>
<td>$0.25 – $0.50</td>
</tr>
<tr>
<td>Storage capacity</td>
<td>Unlimited$⁴</td>
<td>Medium 3 – 10hrs</td>
<td>Short 1 – 4hrs</td>
<td>Medium-high 4 – 100hrs</td>
</tr>
<tr>
<td>Battery life span</td>
<td>>20 years$²</td>
<td>>10 years$¹</td>
<td>5-10 years</td>
<td>5-10 years</td>
</tr>
<tr>
<td>Cycle</td>
<td>>10,000</td>
<td>1,000 – 10,000$¹</td>
<td>500 – 5,000</td>
<td>1,000 – 5,000</td>
</tr>
<tr>
<td>Depth of discharge</td>
<td>100%</td>
<td>100%</td>
<td>75%</td>
<td>50%</td>
</tr>
<tr>
<td>Safety</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Fire risk</td>
<td>Low risk</td>
</tr>
</tbody>
</table>

Notes: ZBM2 expected stack life of 10 years / 40,000 kWh regardless of cycle depth. Source: Redflow Limited (ASX: RFX) investor presentation. Energy Exchange conference presentation, Pacific Northwest National Laboratory, August 1 2017. SA Energy Storage conference 2017, Mott MacDonald Africa Pty. Ltd. Storage capacity is limited only by the volume of electrolyte.
VRFB VS LITHIUM-ION

Lithium-based batteries are well suited to consumer electronics and electric vehicles, their lifetimes can be limited.

- VRFB technology can be fully discharged over an almost unlimited number of charge and discharge cycles without degrading.
- This is an important factor when matching the daily demands of utility-scale solar and wind power generation.

Source: www.vrbenergy.com
LEADING TO MASSIVE DEPLOYMENTS OF VRFBs

Technical and economic fundamentals are leading to massive deployment of VRFBs, especially in Asia - large scale VRFB projects being delivered in Japan and China.

<table>
<thead>
<tr>
<th>Details</th>
<th>Sumitomo's 60MWh in Japan</th>
<th>Rongke Power's 800MWh in China</th>
<th>Pu Neng's 500MWh in China</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>Hokkaido, Japan</td>
<td>Dalian City, China</td>
<td>Hubei province, China</td>
</tr>
<tr>
<td>Stage</td>
<td>Commenced operations in 2015</td>
<td>Approved by China National Energy Administration in May 2016</td>
<td>3-phase project to be finished by 2020</td>
</tr>
<tr>
<td>Developer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scale</td>
<td>60MWh (15MW for 4h)</td>
<td>800MWh (200MW)</td>
<td>Phase 1: 12MWH (3MW)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Project: 500 MWH (100MW)</td>
<td></td>
</tr>
<tr>
<td>Application</td>
<td>Stabilise the flow of wind and solar power on the northern island of Hokkaido</td>
<td>Project will provide peak-shaving as well as form another load center for the Dalian peninsula, enhancing grid stabilisation</td>
<td>Project will serve as a critical peak power plant, delivering reliability and emissions reductions</td>
</tr>
</tbody>
</table>

Source: Company Announcements.

These large VRFBs are part of China's new National Development Plan's “focus includes 100MW-grade, vanadium redox flow battery energy storage stations”
The global renewables sector is experiencing unprecedented growth due to sharp reductions in the cost of wind and solar power generation and enhanced policy efforts by governments.

- For example, the cost of building utility-scale solar power plants has fallen by 50% in the past five years.
- The International Energy Agency projects that renewables will remain the fastest-growing source of electricity generation, with their share growing to 28% in 2021 from 23% in 2015.

Levelised cost of electricity (US$m per megawatt)

Source: Bloomberg New Energy Finance.
Image: Rongke Power’s factory that produces vanadium redox-flow batteries destined for the world’s largest battery site: a 200-megawatt, 800-megawatt-hour storage station in China’s Liaoning province.
KORID Energy Ltd. is developing proprietary vanadium redox flow battery (VRFB) energy storage technology.

- The VRFB technology, is known as V-KOR

- KOR is a commercial ready rechargeable flow battery technology that stores energy for longer and with a greater life expectancy than existing battery solutions

- V-KOR systems are fully scalable with built solutions from 2kW to 20MW and larger to suit customer specific requirements

- V-KOR has been developed over the last ten years and the technology is patent protected
KORID’S V-KOR VRFB

KORID’s VRFB technology is a modular "plug and play" containerised utility scale storage solution.

Composition of Korid Energy’s V-KOR VRFB

1. Electrolyte tanks
2. Cell stacks / membrane
3. Pumps and other balance of plant equipment
4. Power conversion system (including control system, communications, inverter, electrical wiring, etc.)
5. Standard size shipping container
COMPOSITION OF STANDARD VRFB

VRFB uses a circulating electrolyte solution of vanadium pentoxide to store the charge in tanks.

Source: Sumitomo website.
HOW DOES VRFB TECHNOLOGY WORK?

VRFB use a circulating electrolyte solution of vanadium pentoxide to store the charge in tanks.

Energy is stored in tanks as charged vanadium liquid electrolyte.

When electrolyte has released energy, it must be recharged.

Charges are transferred across the cell stacks/membrane from one liquid to the other, depending on whether the battery is storing or releasing electricity.

V-KOR Electrolyte tank (+VE)

V-KOR Electrolyte tank (-VE)

V-KOR power conditioning system

V-KOR cell stack

Sends electricity to grid when demand is needed. Process is reversed and solar energy or other energy sources (wind etc.) recharge battery when demand is low.

VANUARY 2020
V-KOR STACK TECHNOLOGY

The V-KOR stack technology is aimed at improving battery performance and lowering manufacturing costs compared to conventional VRFB technology.

- Each VRFB stack is made up of a series of multi cell frames
- Cell frames are stacked up in repeating series to form a number of cells within the overall battery stack

Four stack sizes of batteries have been developed to date by Korid including a 2.5kW, 5kW, 10kW and 25kW

Developing and testing new stack system up to 50kW
ADVANCED COMMERCIAL READY TECHNOLOGY

The V-KOR battery solutions are built to order for commercial, industrial and grid scale applications.

- V-KOR has been developed over the past ten years and patents are granted to protect the design.
- Four stack sizes of batteries have been developed to date including a 2.5kW, 5kW, 10kW and 25kW.
- Technology is expected to drive the adoption of clean energy solutions.

V-KOR: 3.6MW large scale grid battery concept
V-KOR: off-grid battery concept
ABILITY TO SCALE V-KOR TECHNOLOGY

An important attribute of VRFB systems is that their energy capacity is independent of the power rating, allowing them to be designed for highly specific energy and power requirements and making them well suited to applications with large energy capacity specifications.

Whether in combination with solar PV, wind power or grid power – the vanadium redox flow energy storage system aims to ensure uninterrupted power supply.

Illustrative V-KOR system (25kw/100kWh) being utilised via a solar PV

Illustrative V-KOR system (1MW/4MWh) being utilised via a solar PV
PERTH MICRO GRID INTEGRATION

In June 2018 the Company deployed the 1st Australian V-KOR trial battery. The trial is scheduled to run for 4 months with the round of testing focusing on a micro grid installation.

First phase testing of the 25kW (100kWh) V-KOR vanadium redox flow battery in a micro grid setting has commenced. Micro grid integration between a 21kW solar PV system and a 21kW diesel generator.

The V-KOR trial battery consists of 2 electrolyte tanks, 2 battery stacks of 12.5kW, one 25kW inverter, associated electrolyte pumps and a power management system. The battery is housed in a 20-foot container, oversized to allow for ease of inspection during the trial period.

Trial commenced at OzLinc Industries in O'Connor, Perth.

OzLinc is a supplier of pipe, fittings, flanges, valves and hosing to the Australian marine, industrial and resources sectors.

The V-KOR demonstration battery will be charged by a 21 rooftop solar PV grid connected system.
A significant development milestone has been achieved on the V-KOR battery with 9 years of full daily cycles being completed

- No significant degradation in V-KOR battery performance during testing
- V-KOR battery units tested by Korea Conformity Laboratories
- The completion of this successful testing is considered to be representative of “in use” battery performance and supports V-KOR’s progression towards initial commercialisation via customer orders
- The V-KOR battery has been developed over the past five years with over US$3 million dollars invested to date in research, development, testing and IP protection.

20kW solar PV integrated with 50kW V-KOR battery and the electricity grid in a field test site at Seosan-si in Korea.
ADDITIONAL INFORMATION

Neil Foran, Chief Financial Officer
Margaret Lake Diamonds Inc.
neil@margaretlakediamonds.com

Jared Lazerson, Chief Executive Officer
Margaret Lake Diamonds Inc.
jared@margaretlakediamonds.com